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SUMMARY

If the mean daily motion of a satellite is nearly com-

mensurable with the angular velocity of rotation of the earth,

long period perturbations will influence the motion of the

satellite. The eccentricity of such a commensurable orbit

is not necessarily small, as the example of Explorer VI

shows. This circumstance has brought about the develop-

ment of a semi-analytical method for treating the perturba-

tions. This method avoids the need to develop the disturbing

function into powers of the eccentricity; consequently, it

includes the case of elongated orbits as well as those with

moderate eccentricities.
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LONGPERIODEFFECTSOF THE ELLIPTICITY OF

THE EARTH'S EQUATORON THE MOTION OF

ARTIFICIAL SATELLITES"

by

Peter Musen

Goddard Space Flight Center

INTRODUCTION

This article considers the long period perturbations in the motion of a satellite, pro-

duced by the ellipticity of the earth's equator. If the mean daily motion of the satellite is

nearly commensurable with the angular velocity of rotation of the earth, then long period

(critical) terms appear in the development of the disturbing function. There are meth-

ods, developed by Sehnal (Reference 1), Cook (Reference 2), and O'Keefe and Batchlor

(Reference 3), which are applicable to cases in which the eccentricity is small and the

coefficients of the critical terms can be developed into rapidly convergent power series

in the eccentricity. However, eccentricities of the commensurable orbits are not neces-

sarily small, as Explorer VI (1959_) shows. Furthermore, in many cases, such as

r£/n = 2/3 or 2/5, where n is the satellite's mean motion and n' is the earth's angu-

lar velocity of rotation, the influence of the ellipticity of the equator can be more easily

found from measurements made when the eccentricity is not small. These circumstances

brought about the development of the theory presented herein, which is applicable to

moderate and large eccentricities indiscriminately, up to approximately the point where

the eccentricity, e, of the orbit is 0.8. This value can be considered the upper limit for

practical application of the theory, because for a larger e the basic series of the theory

begins to converge more slowly. The basic idea of this method is similar to the idea

used by Brouwer (Reference 4) in treating the secular perturbations of eccentric orbits.

DEVELOPMENT OF THE DISTURBING FUNCTION

In this method instead of developing the coefficients of the critical terms in the dis-

turbing function and its derivatives into series in powers of the eccentricity, one

*A similar article by this author appears in the Journal of Geophysical Research, Vol. 67 No. 1, January 1962



substitutes the numerical value of e at the outset and computes the values of the coeffi-

cients by means of numerical integration. Thus, the development is numerical with re-

spect to the eccentricity, but literal with respect to the remaining elements. Satellite

motion is referred to the system of coordinates rigidly connected with the rotating earth.

The coordinates of the satellite (x, y, z) are given with respect to this system, but the

elliptic elements of the satellite's orbit are given with respect to the inertial system

having its origin in the center of the earth, the x and y axes lying in the equator and the

z axis directed toward the north pole. With the proper choice of the moving axes (Ref-

erence 3) the disturbing function _ can be represented in the form:

r 3 \ r 2 /

where r is the radius vector of the satellite, and

x = rcos (f + g) cos (h - n't} - rsin(f + g) sin (h - n't) cosi,

y = rcos(f + g) sin{h- n't} + rs£n(f + g) cos(h- n't) cosi,

z = r sin (f + g) sin i. (2)

In Equation 2, f is the true anomaly of the satellite, g is the argument of perigee, h is

the right ascension of the ascending node, t is time, and i is the inclination of the orbit

with respect to the equator. Substituting Equation 2 into Equation 1 we deduce:

cosi  +
4a 3

+ A_2 (i - cos i)2 (a-_3-- cos (2f + 2g - 2h + 2n't)
4a 3

+ A2---_2 s£n2£ (_ar)3COS(2h - 2tit),2a3

where a is the semi-major axis of the orbit of the satellite.When the criticalargu-

ment w = sl _ 2tit is introduced, I being the mean anomaly of the satelliteand

(3)
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we have, substituting sl - w for 2n't into Equation 3,

f2
4a s {I + cos£} 2 cos (2f - sl + w + 2g + 2h)

+-- (I - cosi) 2 cos (2f + sl - w + 2g - 2h)
4a 3

A22 (a) 3+_in_i _o_ (-_l + _ + 2h) • (4)

By using Equation 4, the long period part of the disturbing function may be written:

R = 1 f2,_ dl •
2_ J0 (5)

Taking into consideration

l f02= (----:)P sin(qf - sl) dl = O ,

and defining

= cos(qf - sl) dl , (6)

we deduce:

R --

A22

(I + cosi)2Q_ '_ cos (sl + 2g + 2h - 2n't)
4a 3

A22

__ .. _2 ,-, 3 2 2n't)+ 4a 3 {1 - cos_j v_,' cos (s/ - 2g + 2h -

A22

(7)



The coefficients Q_P'q are functions only of the eccentricity and could be computed by

numerical integration for a given value of e. However, if the eccentricity is large,

neither the mean, the eccentric, nor the true anomaly is convenient to use as the basic

variable in the process of integration along the whole orbit. In some part of the orbit

one of the anomalies might be more convem.'ent than another, but the use of any one

anomaly along the complete orbit leads to the multiplication of a large number by a

small one. In addition, the use of Kepler's equation becomes inconvenient. For these

reasons a new anomaly u is introduced by means of the equation

c
!

_f

where

1 f am(u,k}, (8)
2

2e
k 2 - (9)

1 +e

and the complementary modulus k' is obtained from

k'2 :--1 - e (10)
l+e

Introduction of u leads to the representation of the integrand by a rapidly convergent

series, even for large eccentricities; the troublesome divisor 1 - e will appear in front

of the integral. Basically, the anomaly u does not differ from the anomaly introduced

by Gravelius (Reference 5) in treating planetary perturbations for the case of highly

eccentric orbits. The Gravelius transformation is a special case of Glyd6n's transforma-

tion (Reference 6). We deduce from Equation 8 that

2

a 1 +ecos f 1 + k'
- dn 2 u, (11)

r 1 - e 2 2k '_

and from Equations 8 and 11 we find that

1 r 2k '
de = -- • -- df - du

lfTZ _ a dnu

(12)



and

r k'
dl -- 2-"

a dn u

where e is the eccentric anomaly of the satellite.

that

--du,

It follows from Equations 11 and 13

(13)

dl
4k 'a du

2 dn 3 u1 +k'
(14)

Taking

k I

-- = dn(u + K)
dn u

and

2

1 + k' 1 d 2
dn a u dn u---

2 2 du 2
(dn u)

into account, we have from Equation 14:

dl = 2 dn (u , K) du
2 d =

1 + k '2 du 2 dn (u + K) du

and therefore,

1 = 2 am (u + K) - _ -
2 d k'

,21 + k du dn-_
(15)



The value for 2K is computed using the formulas

P - p

I+ kl/_

_" = (2)+ 2(2) s + 15(P) 9

I

and

]_ = 1 + 2_- + 2_.4 ÷ 2.h.9 + .....

We obtain, using Equations 6, 8, 11, 14, and 15:

1 (1 + k'2) P-1 1 (K- -- COS (qf - Sl ) •dn 2p-3 u du (16)Q! p,q

- 2 p'2 k s2p-3 77 Jo

and

2s d k' (17)
qf - sl = 2q am u - 2s am (u + K) + s_r + 2 du dn uI +k'

The argument qf - sl and the value of dn 2p-3 u can be developed into fast convergent

Fourier series, and only the first few terms of these series need be taken into considera-

tion to compute the perturbations. Taking the developments

_Tu _ 2_._ . rmTu
rn= l

= --+ (_1) '_ _2. cos2K 1 + K
m= I

(18)
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into consideration, we deduce from Equations 15 and 17 the following rapidly convergent

series:

nu _ 1 7r2 m m'rru (19)l = --K + 4 (-l)m + I _ _2® sin_- ;

ms 1

7

qf- sl
_r(q- s)

K
tl

° I+ 4 _ q + s(-1)_+1 7z2 ms(-1 _m arrru+ K2 1 + k'2J -i-+ k_--------_" sin--m K
m=l

(20)

In addition, we find

Tr + _--i 2_" mzru (21)dn u = 2K 1 + _2sc°s K

m--I

By substituting the numerical values of Equations 20 and 21 into Equation 16 the values

of Q:.q can easily be obtained by means of a numerical quadrature. The value of _, is

small even for large eccentricities, for example, for e = 0.8, _ = 0. 134.

In order to compute the perturbations of the elements we must form the derivatives

of R with respect to the elements. All the derivatives can be easily computed analytically

except the derivative with respect to the eccentricity, which must be computed numerically.

Differentiating Equation 6 with respect to e and taking

.5h = -_ cos f

and

he - + sin f

into consideration, we obtain a general formula for the numerical computation of the

derivative of Q,P' q with respect to e:

h (Qp) p+q_e 'q - 2
1 1 q -1).
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In our particular case we have, taking QP' q = Qf,'- q into consideration,

and

!

"ae 3.o = 7 ' + Q''I .

THE PROBLEM OF INTEGRATION

In performing the integration the canonical elements of Delaunay are used. This

choice is justified by the simplicity of the process by which the perturbations can be

obtained (References 7 and 8). It is assumed that the commensurability is not extremely

sharp and that the integrals can be represented in a trigonometrical form. If there is a

sharp commensurability the theory of resonance should be applied. In terms of Delaunay

canonical variables,

L : VT, l,

G = )/_(i - e'), g,

H = Va(l - e 2 ) cosi, h,

the disturbing function can be expressed in the form

R = 4 L _ 1 + Q3,2cos (sl + 2g + 2h - 2n't)

+--L-- E 1 - Q_%,2cos (sl - 2g + 2h - 2n't)4

A221

( t,2\.,_ Q3, O (sl 2h 2n't)+ -- _ 1 - cos + - •2 G21
(23)



v-4
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The gravitational constant is set equal to one. The value of A 22 is comparable to

the value of the coefficient of the fourth harmonic. The perturbations will be limited

herein to those of the first order with respect to A22. The mean values of 1, g, and

h can be taken from Brouwer (Reference 9), and after the integration is performed L,

G, and H can be replaced by their "undisturbed" values. We deduce from:

dL BR dl _R

dt _l ' dt 3L ;

dG _R d_gg = _R
-- ---- _) t

dt _g dt _G

dH _R dh BR

dt _h dt _H

the following equations:

dt 4 L 6 s 1 + Qs3,2 sin (s/ + 2g + 2h - 2n't)

-_--t-_-, I - o2. , ,_, (,z - 2g + 2), - 2n't)

-'_" L--=-g'-s 1 -"_ Q3,O
sin (sl + 2h - 2n't) ; (24)

dG 1A22(__I) 2dt - 2 L 6 1 +

+¥yr 1-

Q_,2 sin (s/ + 2g + 2h - 2n't)

Q3,2 sin (sl - 2g ÷ 2h - 2n't) ;
-$

(25)
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dt 2 L 6 1 + Q3.2
sin (sl + 2g + 2h - 2n't)

QJ,_ _i. (_z- 2g+ :h - 2.'t)

L6 1 --_2 Q/'° sin (sl + 2h - 2n't), (26)

Taking

and

_Q_'q I (G) hQs p'q

into account:

dl hR I G/ _ hR

dt - _L e _L-3-] _e

cos (s/ + 2g + 2h - 2n_t)

LTA22 [} 1 G(_.)_QJs'2](GH--) 2
+--= o_%,_ - - 1 - ¢o. (.z - 2g + 2h - 2.'t)

4e _e

(27)
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dg

dt
+

_G e\L 2] _e

I"4

d,
1 A22 H L 2 Q3,2 21 s
4 L 7 2_ 1 + s + 1 + e _e

cos (sl + 2g + 2h - 2n't)

4 L 7 2_-_-G-_] 1 - Q3s '2 - 1 - e _e

2 L "/ 2 L_- ' G-3-Q3'° - 1 - _- e _e cos - ,
(28)

and

dh

dt 21 A22 (1+H)(L/Qs3'2L7 cos (sl + 2g + 2h - 2n't)

+----_ 1 - - -2 -s

,22 (L 0:.0+ _- COS

(29)

Putting

A22

• X22 -- L 4 '

and designating the mean motions of the arguments sl + 2g + 2h - 2n't and

Wt W_ W3

sl - 2g + 2h - 2n't and sl + 2h- 2n't,respectively, by L3, L3, and_--_, we deduce the

following expressions for the perturbations:
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8L

L 4 WI

I s7_2 , - Q2,,2 cos (_z - 2_ + 2h - 2n't)
4 W 2

I sT22 ( H2)2 we I-_ Q?,0co_ (_l +2h-2.'t) ;
(30)

I

SO _ _22 (1
L 2W I

cos (sl + 2g + 2h - 2n't)

Q=_,2cos (sl- 2g + 2h - 2n't) ;
(31)

__)_q:,2 + 2g+8H _ "7'22 i + COS (Sl 2h - 2n't)

L 2W l ti/

+ 2_2 1 - Q_a), 2co s (sl- 2g + 2h- 2n't)

( .2))'22 1 - cos (sl+ 2h - 2n't) •

+w-7 _
(32)

8Z
_ Wl Q:, 2 4e

sin (sl + 2g + 2h- 2n't)

T22W2 [3 Q3,2_ - 1-_-(L_)_J4e 3Q-a"al (l- H) 2 sin (s' - 2g + 2h - 2n't)

E3Q:.oiW3 - 2-e ---_e J 1 -_-Y sin (s_ + 2h - 2n't);

(33)
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8g
1 _22

4 W_

i _22

4 W2

I _22

2 W3

H

2 H2 L3 H_ -_Qa,o]

_Qs 3 , 2 ].+ G--) Q' ' + e

13

sin (sl + 2g + 2h - 2n't)

sin (sl - 2g + 2h - 2n't)

sin (sl + 2h - 2n't) ; (34)

8h -
2WI 1 +_ Qs3,2 sin (sl + 2g + 2h - 2n't)

+ 2W---2 1 - Q3, I sin (sl - 2g + 2h - 2n't)

+__ Q_,o sin (sl + 2h - 2n't).
W3 s

(35)

CONCLUSION

This is a semi-analytical method of treating the influence of the ellipticity of the

equator on the motion of a satellite. The method does not require a development of the

disturbing function into powers of the eccentricity and, consequently, is valid for highly

eccentric orbits. Its validity for orbits with a small eccentricity depends on the type of

programming used. Programming with a floating decimal point would permit its use for

such a case.

Long period terms will appear in the development of the perturbations if the mean

daily motion of the satellite in question is commensurable with the angular velocity of

the earth's rotation. The influence of the ellipticity of the earth's equator is greater for a

satellite with a direct motion than for a satellite with a retrograde motion provided that e

and i are small. This can easily be seen from an analytic development of the disturbing

function, which shows that the order of the coefficients OT' q of the long period terms

with respect to e and sin i is higher if the motion is retrograde.
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